Metabolic markers of breast cancer: enhanced choline metabolism and reduced choline-ether-phospholipid synthesis.

نویسندگان

  • Rachel Katz-Brull
  • Dalia Seger
  • Dalia Rivenson-Segal
  • Edna Rushkin
  • Hadassa Degani
چکیده

Specific genetic alterations during malignant transformation may induce the synthesis and breakdown of choline phospholipids, mediating transduction of mitogenic signals. The high level of water-soluble choline metabolites in cancerous breast tumors, relative to benign lesions and normal breast tissue, has been used as a diagnostic marker of malignancy. To unravel the biochemical pathways underlying this phenomenon, we used tracer kinetics and 13C and 31P magnetic resonance spectroscopy to compare choline transport, routing, and metabolism to phospholipids in primary cultures of human mammary epithelial cells and in MCF7 human breast cancer cells. The rate of choline transport under physiological choline concentrations was 2-fold higher in the cancer cells. The phosphorylation of choline to phosphocholine and oxidation of choline to betaine yielded 10-fold higher levels of these metabolites in the cancer cells. However, additional incorporation of choline to phosphatidylcholine was similar in both cell types. Thus, enhanced choline transport and augmented synthesis of phosphocholine and betaine are dominant pathways responsible for the elevated presence of choline metabolites in cancerous breast tumors. Uniquely, reduced levels and synthesis of a choline-ether-phospholipid may also serve as a metabolic marker of breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells

INTRODUCTION The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined. METHODS MDA-MB-46...

متن کامل

Molecular causes of the aberrant choline phospholipid metabolism in breast cancer.

Proton magnetic resonance spectroscopy ((1)H MRS) consistently detects significant differences in choline phospholipid metabolites of malignant versus benign breast lesions. It is critically important to understand the molecular causes underlying these metabolic differences, because this may identify novel targets for attack in cancer cells. In this study, differences in choline membrane metabo...

متن کامل

RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation.

Choline kinase is overexpressed in breast cancer cells and activated by oncogenes and mitogenic signals, making it a potential target for cancer therapy. Here, we have examined, for the first time, the effects of RNA interference (RNAi)-mediated down-regulation of choline kinase in nonmalignant and malignant human breast epithelial cell lines using magnetic resonance spectroscopy (MRS) as well ...

متن کامل

Metabolism in Breast Cancer Molecular Causes of the Aberrant Choline Phospholipid

Proton magnetic resonance spectroscopy (H MRS) consistently detects significant differences in choline phospholipid metabolites of malignant versus benign breast lesions. It is critically important to understand the molecular causes underlying these metabolic differences, because this may identify novel targets for attack in cancer cells. In this study, differences in choline membrane metabolis...

متن کامل

Silencing GDPD5, a novel anticancer target, increases glycerophosphocholine in human breast cancer cells

Introduction: Phosphocholine (PC) and total choline-containing compounds (tCho = glycerophosphocholine (GPC) + PC + free choline (Cho)) are elevated in human breast cancers, as demonstrated by numerous H magnetic resonance (MR) spectroscopy (MRS) studies [1, 2]. A switch from high GPC and low PC to low GPC and high PC characterizes the choline metabolite profile of breast [3] and ovarian [4] ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 62 7  شماره 

صفحات  -

تاریخ انتشار 2002